Newton's Law of Universal Gravitation

- Newton found a force of attraction between any two things with mass
- Newton's Law of Universal Gravitation:

$$F_G = G \frac{m_1 \cdot m_2}{r^2}$$

- m₁ and m₂ = masses measured in kg
- r = distance between the two masses in m
- G = Gravitational Constant G = 6.67 x 10^{-11} $\frac{N \cdot m^2}{kg^2}$

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

Newton's Law of Universal Gravitation

• Smaller Scale:

Larger Scale:

Our Force of Gravity

Based on Newton's Law of Universal Gravitation

$$F_{g} = mg$$

$$F_{G} = G \frac{m_{1} \cdot m_{2}}{r^{2}}$$
 *Difference between g and G?

Example 7

what is the value for the acceleration of gravity on the top of Mount Everest? (altitude = 8,848 m)

Radius of Earth = 6.371 x 10⁶ m

$$f_{9} = f_{8} + f_{1} + f_{2} + f_{3} + f_{4} + f_{5} + f_{5$$

Newton's Law of Universal Gravitation

- The larger the two masses, the larger the attraction
 - The larger the distance between the two masses, the force of attraction falls away very quickly.
 - *Inverse-Square Law:

* = Gmim2

* Coulomb's

Our Force of Gravity

- In general....
 - Use F_g = mg when we are here on Earth
 - Use $F_G = G \frac{m_1 \cdot m_2}{r^2}$ if we are leaving Earth

Universal Gravitation and **Centripetal Forces**

Example 8

Calculate the period of the moon around the earth in days based on Newton's Law of Universal Gravitation. Treat the Earth and Moon as point sources

Necessary Constants:

Mass of Earth = $5.97 \times 10^{24} \text{ kg}$

Mass of Moon = $7.35 \times 10^{22} \text{ kg}$

Distance Between

Earth & Moon = 3.84 x 108 m

Objects get treated at point sources when their size is negligible based on the other sizes or distances also being calculated.

