Getting objects to Rotate

Net Force is needed to get an object to move

F=ma

• Net Torque is needed to get an object to rotate

Torque

Newton's second law of rotation

(Forces cause masses to accelerate)

(Torque cause masses to rotate)

Torque are most effective when applied ... Perpendicularly

Torque

Torque (τ) - the ability of a force to turn an object about an axis. 'Turning Power

• SI Units: Newton meter (m N)

Axis of rotation - the point around which the object rotates
Lever arm - the distance from the axis of rotation to the

applied force

Effectiveness of Torque

 Only forces perpendicular to the lever arm will cause any movement. *Or a perpendicular component

Torque Practice

A series of wrenches of different lengths is used on a hexagonal bolt, as shown below. Which combination of wrench length and force applies the greatest torque to the bolt? $T = (L)^{(a,F)} C^{(a,F)} C^{($

Directions for Torque

- *By convention
- Positive: Counter-clockwise
 Negative: Clockwise

Example 4

Calculate the net torque about the axel of the wheel shown assume that there is a

Example 5

For the wheel-axie system snown, which condition required for the system to be in static equilibrium? Fg is causing torque For the wheel-axle system shown, which of the following expresses the

A.
$$m_1 = m_2$$

$$\widehat{B}$$
, a m₁ = b m₂

C.
$$a m_2 = b m_1$$

D.
$$a^2 m_1 = b^2 m_2$$

E.
$$b^2m_1 = a^2 m_2$$

