- Work measures the effectiveness of a force
- · Also indicates changes in energy

$$\Delta E = W = F_{ll}d = F \cdot d \cdot \cos \theta$$

- · Measured in Joules
- Positive work = increase of energy
- Negative work = decrease in energy
- 0 Work = no change
- Centripetal Forces always do 0 work

- · Graphs Force vs. Displacement
- · Work done by a variable force

- Power = efficiency of a force
- Measured in Watts (W)

$$P = \frac{\Delta E}{t} = \frac{W}{t} = \frac{F \cdot d \cos \theta}{t} = Fv \cos \theta$$

- Energy
 - Kinetic (KE = 1/2mv²)
 - Gravitational Potential (U = mgh)

 Gravitational − Celestial bodies
 - Elastic Potential (U_s = 1/2kx²)
- Work Energy Theorem

$$\Delta KE = W$$

Conservation of Energy

Store energy

Store energy

Springs U= mgh

Springs V= lake

Conservative vs Non-Conservative Forces

A car of mass m slides across a patch of ice at a speed v with its brakes locked. It the hits dry pavement and skids to a stop in a distance d. The coefficient of kinetic friction between the tires and the dry road is μ .

If the car has a mass of 2m, it would have skidded a distance of

D. 2d

If d = -/2my 2

Ff. d = -/2my 2

M. Fn. d = /2my 2

M. Mg. d = 1/2my 2

Mg. d = 1/2my 2

A car of mass m slides across a patch of ice at a speed v with its brakes locked. It the hits dry pavement and skids to a stop in a distance d. The coefficient of kinetic friction between the tires and the dry road is μ .

If the car has a speed of 2v, it would have skidded a distance of

- A. d
- B. 1.41 d
- C. 2 d
- D. 4 d

Impulse, Momentum, Collisions

- Momentum tendency of an object to continue moving after an applied force is removed
 - p = mv
- Units $kg \cdot \frac{m}{s}$

- *Linear and angular
- Impulse All about **how** a force is applied = $F \cdot \Delta t$
- Impulse required to change an object's momentum

$$\Delta p = F \cdot \Delta t$$

- Area between line & axis of force vs. time = Impulse (& change in momentum)
- Impulse & Momentum are both vectors!

Impulse, Momentum, Collisions

- Conservation of momentum (in an isolated system, normally 2 objects)
 - Momentum before interaction = momentum after interaction

$$p_o = p_f$$

 $p_o = p_f$ • Analyze one dimension at a time

$$+m_1 \cdot v_{1o} + m_2 \cdot v_{2o} = m_1 \cdot v_{1f} + m_2 \cdot v_{2f}$$

•	CollisionsElastic (perfect physics world)	Momentum Conserved Yes	KE Conserved Yes
	 Inelastic (realistic physics world) 	Yes	No
	Total Inelastic (things stick together after collision)	er Yes	No

Impulse, Momentum, & Collisions – Ballistic Pendulum

- A ballistic pendulum is a device used to measure the velocities of fast moving projectiles such as bullets. In this example, a 0.0500 kg bullet, initially travelling 150.0 m/s strikes and embeds itself into a wooden ballistic pendulum in a completely inelastic collision. The wood block has a mass of 6.80 kg and was initially at rest.
- A. What is the common velocity of the bullet and block after their collision?
- B. Using conservation of energy, find the change in vertical height after the bullet is embedded in the wood?

Impulse, Momentum, & Collisions Collision + projectile motion

 A pendulum of length L = 1.0 meter and bob with mass m = 1.0 kg is released from rest at an angle θ = 30° from the vertical. When the pendulum reaches the vertical position, the bob strikes a mass M = 3.0 kg that is resting on a frictionless table that has a height h = 0.85m.

- A. When the pendulum reaches the vertical position, calculate the speed of the bob just before it strikes the box.
- B. Calculate the speed of the bob and the box just after they collide elastically.
- C. Determine the impulse acting on the box during the collision.
- D. Determine how far away from the bottom edge of the table, Δx , the box will the box strike the floor.